Designing transparent rock micromodel in Permlab for reaction flow studies

Designing transparent rock micromodel in Permlab for reaction flow studies

Alireza Teimory during his MSc. thesis could design and manufacture a transparent micro model to study reactive flow in porous media. Congrats Alireza for his success. The cell of this study has two characteristics. First, it enables us to work on a real rock sample to investigate geochemical reactions by incorporating actual rocks. Second, it provides a visual observation capability to monitor the behavior of fluid injection into rocks. The transparent cell consists of two transparent Plexiglass plates. A square pocket was precisely machined at the center of the bottom plate to provide a holder for a slabbed rock to be installed in the cell. Bolts and nuts were used to stitch both plates together. An opaque silicon rubber O-ring was used between the plates to prevent any fluid leakage during the experiments. The designed cell was hydraulically tested up to 120 psi before the main experiments.

In the first application, we implemented the manufactured setup to investigate weak acid injection on fracture opening in calcite and dolomite reservoirs. The results were published in the “Petroleum Research” Journal.

In the second study, we investigated acid pre-flushing and pH-sensitive microgel injection in fractured carbonate rocks for conformance control purposes. First, the dependency of fracture aperture changes to the acid pre-flush flow rate was examined. Then, we investigated the effect of pH-sensitive microgel concentration on its resistance to block fractures during post-water flooding by studying the gel failure mechanisms (e.g., adhesive separation, cohesive failure). Finally, the effect of an initial aperture of fracture was examined on microgel washout when water injection is resumed. The results showed that both decreasing the acid flow rate and lowering the initial aperture could increase the rate of aperture changes. Moreover, the microgel solution with a concentration of 1 wt.% showed the highest resistance (98.2 psi/ft) against post-water injection. Additionally, this microgel concentration had the highest permeability reduction factor. Meanwhile, the smaller initial aperture of fracture contributed to a higher microgel resistance. The results were published in “Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles“.

Permlab wishes Alireza the best in the next phase of his life.